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In this paper, we show the existence of nonnegative interpolation formulas
for functions which are solutions of second-order uniformly elliptic equations
over bounded domains.

1. INTRODUCTION

In this paper we are interested in the existence of nonnegative interpolation
formulas for functions which are solutions of second-order uniformly elliptic
differential equations over bounded domains in Er. The existence theory is
based on properties of nonnegative linear functionals. Some of this theory is
outlined in Section 2, and extended in a direction useful for interpolation.
The theory is applied to solutions of elliptic equations in Section 3.

2. MOMENT CONE STRUCTURE

Let T be a compact set in P, and let Cn(T) be the (n + I)-dimensional
linear vector space spanned by the linearly independent continuous functions
({Jo(t) , ({J!(t), ... , ({In(t) defined on T. We assume the Krein Condition (see
Rogosinski [8]) is satisfied, namely, 3 pet) E CiT) such thatp(t);;;, IX > 0 on T.

Relative to the basis ({Jo, ({Jr, ... , ({In of Cn(T), we can represent any linear
functional L in the dual space Cn(T)* by its moment vector (L({Jo,L({Jr, ... ,L({JnY,
a vector in En+!. This provides a natural identification between CnCT)* and
p+!. In particular, the point functional, Lt(f) ==/(t), 'V /E CnCT), is
represented in p+1 by the vector ep(t) == (({Jo(t), ({J!(t), ... , ({In(t)Y. Let
F== {ep(t)/t E T} c En+! designate the set of point functionals. By continuity,
F is a compact set.

1 This work was partially supported by the Office of Naval Research, Contract Nonr
562(36).
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A linear functional L is said to be strictly positive if p(t»> 0, 'litE T,
pet) ¢ °::? L(p) > 0, and nonnegative if p(t»> 0, 'litE T ::? L(p) » 0. A
nonnegative functional which is not strictly positive is said to be singularly
positive. The convex cone of nonnegative linear functionals is denoted by M n
(either as a set in En+1 with moment vectors as elements, or as a set in Cn(T)*,
the dual space, with functionals as elements). Clearly, Fe M n •

For any set C, let K(C) designate the cone hull of C (i.e., the smallest convex
cone with vertex at the origin which contains C), and let B(C) designate the
convex hull of C. Then, the following facts are known (Rogosinski ([8], [9],
Wilson [Il]):

(i) Mn is a closed, convex, pointed cone in En+1, with non-emptJ
interior.

(ii) M n = K(F) = K(B(F».
(iii) M n

0 (the interior ofM n) is the set of strictly positive linear functionals,
while oMn (the boundary of M n) is the set of singularly positive
linear functionals.

(iv) ForL E M n, :3 points to, t I, .. " tpET, and positive scalars Ao, AI' ... , Ap ,

such that

p

L(f) = 2 Ai f(t i),
i=O

V fE CiT),

where p < n, and such that the set of vectors {<p(tO),<p(t l ), ... , <p(tp)}
is linearly independent in En+ I .

In (i) a cone is pointed if the only linear subspace it contains is the set {O}.
It is easily observed that F spans the space En+!. Suppose not. Then, F is

contained in a hyperplane through the origin. Thus, :3 h ¢ °such that
Fe {xlh' x = O}. Hence, for each t E T, h· <pet) = 0, so the "polynomial"
b(t) == h· <pet) is identically zero, contradicting the linear independence of
CPo, CPI' ... , CPn on T. By means of this observation, (iv) (an immediate conse­
quence of (ii» can be strengthened to

THEOREM 2.1. Let L be a nonnegative linearfunctional on Cn(T). Then, :3 points
to, tl> , .. , tm and nonnegative scalars Ao, Ail , .. , Am such that

n

(i) L(f) = 2 Ai f(tJ,
i~O

V fE Cn(T), (2.1)

(ii) the set of vectors {<p(to), <petI), ... ,<p(tn)} is linearly independent in
En+!.

Proof From (iv), we have
p

L(f) = 2 Ai f(t i),
i=O

V fE Cn(T),
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where Ai> O. Since F spans p+l, the linearly independent set {<p(to),···, <p(tp)}
can be augmented by elements of F, <p(tp +I ), ••. , <p(tn), to provide a basis for
En+J. Define Ap +! = Api 2 = ... = An = 0. Hence,

Q.E.D.

Since the equations (2.1) are equivalent to the system of equations

n

L Aj f(Ji(t j ) = mi
j~O

i = 0,1, ... , n, (2.2)

where mi = L(f(J/), (ii) implies that the matrix of the system is nonsingular, and
that the coefficients Ao, AI' ..., An are determined uniquely. Thus, with this set
of points, we can find a solution to the system

n

L f/-j f(J/(tj) = Ci,
j~O

i=0,1,2, ... ,n,

say, /lo(c). Clearly, /lo(c) is continuous in c, and /lo(m) = A;:;' 0.
This means that there exists a (unique) expression of the form (2.1) for any

linear functional M on Cn(T) involving the points to, t[, ... , tn determined by
L (although the coefficients Ai may have any sign). Thus, we say the points
to, tj, ... , tn can be used to interpolate to any linear functional.

We can prove a stronger result:

THEOREM 2.2. Let D be a compact set in Em. Let c(s), sED, be a continuous
map ofD into M no. Then, "3 points to, tj, ... , tN in T, andfunctions AO(S), AI(S),
... , AN(S), nonnegative on D, such that

N

c(s) = L Ai(S) <p(ti)
/=0

where, in general, N}> n. Equivalently, iffor each sED, L s is a strictly positive
linear functional on Cn(T) and L s is a continuous map ofD into the dual space
Cn(T)*, then, "3 points to, t I' ... , tN in T, and nonnegative functions Ao(S), 1\1 (s),
", An(S), sED, such that

N

Ls(f) = L Ai(S) f(t;),
i~O

Further, the set {<p(to), <p(tI), ...,<p(tN)} can be assumed to span E"+ J .

Proof Let CQ == {c(S) Is EQ}. This is, by continuity, a compact subset of
MilO. Hence H(CQ ) is a convex, compact subset of M"o. By the standard
approximation theorem for compact convex sets (Eggleston [5J, p. 68), there
exists a convex polytope Q, with vertices Pj, P 2, ••• , Pm' such that

CQc QCMno.
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Now, each point of Q is a convex combination of its vertices (Q is the
convex huH of its vertices, by definition), and each vertex can be expressed as
in Theorem 2.1. Therefore, each point of CQ can be expressed as a nonnegative
combination of a finite set of points of F. Q.E.D.

3. INTERPOLATION TO FUNCTIONS SATISFYING ELLIPTIC EQUATIONS

Suppose D is an open, bounded, connected set in E', with boundary aD
and closure D. The differential operator

r a2 r 0
M[u] =~ ai/t)-a:I u(t) +~ b,(t)-a u(t)

~ t·ut· ~ t·
i,j=1 l J i=l l

where au = ajb tED, is said to be uniformly elliptic in D if:1 fL > 0, such that
r r

2: au(t) gi gj ~ f.L 2: g,z,
i,j=1 i~1

v ~ E E', V tED.

We will require the following theorem given in Protter and Weinberger [7],
p.64.

THEOREM 3.1. Let u satisfy in D the differential inequality M[u] + hu ~ 0,
where M is uniformly elliptic in D, h(t) < 0, and where h and the coefficients of
M (au and bJ are bounded. If u attains a nonnegative maximum K at a point
of D, then u =: K.

COROLLARY 3.1.1. Let u, continuous in D, satisfy in D the differential inequality
above, and suppose that u(t) < 0, t E oD. Then u(t) < °in D, unless u =0.

Proof Immediate from Theorem 3.1.

Let Vo, VI> ••• , Vn be continuous functions on D, which satisfy in D the
differential equation

M[u]+hu=O,

and such that, as functions defined on oD, the boundary, they are linearly
independent. We denote their span by Cn(aD) or cn(l», depending on which
set, aD or D, we are considering as their domain of definition.

LEMMA 3.1. Let t* E D. The linear functional Lt.(f) =f(t*), 'if fE Cn(aD),
is strictly positive.

Proof Suppose vet) E CneoD), vet) ¢ 0, vet) ~ 0. Let u(t) = -vet). Then,
M[u] + hu = 0, and by Corollary 3.1.1, u(t*) < 0. Hence, v(t*) > 0, and the
functional is strictly positive. Q.E.D.

We now assume that CneoD) or CneD) satisfies the Krein condition (the
existence of a function strictly positive on its domain of definition). These are
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equivalent assumptions, since aD c D and by the maxImum principle
(Theorem 3.1).

THEOREM 3.2. Let t* E D. Then, under lhe above conditions, :3 points to, tl'
... , til E aD, and nonnegative scalars Ao, AI' ., ',' All' such lhat

II

v(t*) = L Ai vet,),
j~O

'if v E CnClJ).

Further, the points to, t l , ... , til can be used for interpolation. That is, for each
tED,

II

vet) = .2 aJt) vet;),
i~O

where

for t = t*, a;(t*) = A; > 0, i = 0, 1, ... , n.

Proof This is implied by Theorem 2.1 and Lemma 3.1.

(3.1)

Q.E.D.

Q.E.D.

From (3.1), we see that a;(t) is in CIl(lJ), and thus satisfies the differential
equation. Further, it follows directly from (3.1) that a;(tj ) = oij' There is,
of course, no guarantee that aJt) > 0 as t varies in D. However, the following
may be said.

THEOREM 3.3. Let G be a compact set contained in D. Then, :3 points 1o, t I ,

.. , tN E aD, andfunctions Ao(t), Al(t), ... , AN(t), such that

toCt) = i A;(t) vet,), V V E Cn(D),
j~O V tED,

where A;(t) >°for t E G. (N ~ n, usually.)

Proof Theorem 2.2 and Lemma 3.1.

Interpolation formulas of the type of Theorem 3.2 are, of course, special
cases of the type of Theorem 3.3.

Let <poet), <PI (t), '" be a sequence of solutions of the differential equation
M [u] + hu = 0, which are continuous in D, linearly independent as functions
on aD, and where <Po(t);;" a > °on D.

Consider, next, a sequence (n = 0, 1,2, ...) of interpolation formulas
N(n)

ull(f; t) = L Al")(t) feW))
;~O

given by Theorem 3.3 (for Theorem 3.2, N(n) = n) and exact for <Po, <PI' ... , %.
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so that
(i)

N(n)

;;;. 0( 2: ,\~n)(t),
i~O

tE D,

tEG,

tEG,

(ii)

independently of n,
N(n)

o~ 2: 1,,~n)(t)1 ~ Kfoc,
i~O

tE G,

independently of n,

where K = max {<Po(t), t E G}.
Suppose H is a Banach space of functions on D, each continuous there,

and such that each satisfies the differential equation M[u] + hu = O. (We
assume that the norm in H is the sup norm.) Then, if <Po, <PI> ... is a closed
sequence in H,

un(f, t) -+ f(t), as n -+ CD

uniformly on G. This is an immediate consequence of the uniform bounded­
ness principle (see Davis [2], p. 351).

This type offormula should be contrasted with the convergence of harmonic
polynomials of interpolation using points defined by Curtiss for domains in
the plane. (See Curtiss [1].) Curtiss exhibits the existence of interpolation
schemes (N(n) = n) where uniform convergence occurs on compact subsets.
In this paper we have exhibited schemes which converge at a point, or on a
compact subset, specified in advance.

From a numerical point of view, the methods outlined in Wilson [12] can
be used to obtain the interpolation formulas of the type of Theorem 3.2. We
shall present some numerical results in a sequel.
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